
A STUDY AND IMPLEMENTATION OF THE GUARDED
λ-CALCULUS

Naïm Favier

2nd June – 31st July 2020

Internship report — ENS Paris

Supervised by: Guilhem Jaber — Gallinette team— LS2N

1 INTRODUCTION

At the core of the liar’s paradox and its thousand variants lies the notion of (negative) self-reference. This trans-
lates, on the other side of the Curry-Howard correspondence, to the fact that adding recursive types to the
simply-typed λ-calculus loses strong normalisation : every typeA is then inhabited by the non-terminating
term Ω = ω ω = (λx. x x)(λx. x x)1 where ω is given the type µα. α→ A. SettingA = ⊥, this type can
be read as “This proposition is false”.

But the strong normalisation property is quite useful: it guarantees, on one hand, that programs termin-
ate, and on the other hand, that coprograms (in the sense of [AM13]: programs that manipulate potentially
infinite data structures) are productive: that is, that they always produce the next piece of output in finite time.
As an example, consider the following Haskell definitions on infinite lists (streams):

nats = 0 : map (+1) nats
bottom = bottom
filter p (x : xs) | p x = x : filter p xs

| otherwise = filter p xs

While nats is productive and yields the stream of natural numbers, bottom clearly diverges and never pro-
duces a value. filter is not productive either, even if its input stream is, because the predicate might fail to
match any of the elements of the input stream.

This internship focuses on the use of guarded recursion, initially due to Hiroshi Nakano [Naka00], to
achieve productivity in the presence of recursive types and definitions. It adds amodality to the type system,
allowing to ensure that well-typed programs are productive. This approach led to the development of the
guarded λ-calculus by Clouston et al. [CBBB16], which will be our object of study.

The initial goal of the internship was to explore the system of temporal refinements proposed by Guilhem
Jaber and Colin Riba [JR20], which extends the guarded λ-calculus with type-level refinements allowing to
express safety and liveness properties; however, given the circumstances2, we agreed that this goal was too
ambitious, and I instead focused on implementing an evaluator and type-checker for the guarded λ-calculus
in Haskell, later extending it with Hindley-Milner-style polymorphism and implicit boxing.

The resulting project, glam, can be found at https://github.com/ncfavier/glam. It provides a
command-line interpreter and REPL, as well as a web-based interface with a few example programs to play
with, available at https://glam.monade.li.

1up to isomorphism, or assuming equirecursive types
2due to the health crisis, this internship had to be done remotely

1

http://gallinette.inria.fr/
https://github.com/ncfavier/glam
https://glam.monade.li

2 THE GUARDED λ-CALCULUS

We now give a brief and largely informal overview of the guarded λ-calculus as presented in [CBBB16]; see
there for a completely formal presentation.

N.B.— the type signatures presented in this section donot necessarily correspond to types of the guarded
λ-calculus, or even type schemes, but should rather be understood as informal descriptions of its typing rules.

2.1 TYPES AND TERMS

The guarded λ-calculus is based on the simply-typed λ-calculus. It is equipped with usual base constructs
such as integers, a unit type, product types, a zero type, sum types, and the corresponding term formers.

Guarded recursion adds a modality (that is, a unary type former) ▶3, pronounced “later”, to the type
system. Intuitively, a value of type ▶A is a value of type A that is only available later, after one computa-
tion step (e.g. unfolding one level of a fixed-point definition). This modality can be seen as an applicative
functor [MP08], and comes with the corresponding term formers:

next : A→ ▶A

⊛ : ▶(A→ B)→ ▶A→ ▶B

Guarded recursive types are then defined as types of the form µα. F (α), with the restriction that α be
guarded in F (α), that is, that all occurences of α appear under an occurence of ▶. This restriction means
in particular that one cannot express traditional fixed-point combinators (of type (A → A) → A) using
guarded recursive types, but only weaker variants of type (▶A→ A)→ A. This intuitivelymeans that, in a
recursive definition, the object being defined is only available later. Since we use an isorecursive presentation
of guarded recursive types, we also need term formers for both sides of the isomorphisms:

fold : A[µα.A/α]→ µα.A

unfold : µα.A→ A[µα.A/α]

As an example, the type of guarded streams can be defined as StrgA = µα.A × ▶α. One can then define
the constructors and destructors

(::g) : A→ ▶StrgA→ StrgA

hdg : StrgA→ A

tlg : StrgA→ ▶StrgA

While the use of▶ guarantees productivity, it is actually too strong to allow certain productive definitions.
For example, consider the function every2nd, which removes every second element from a stream; while
productive, this function is acausal: elements of the output stream depend on deeper elements of the input
stream. As a consequence, it cannot be expressed using guarded recursive types alone, because there is no
way to get from▶▶A to▶A.

This is solved by introducing another modality ■, pronounced “constant”, as a way of indicating that
a computation is complete, i.e. that the entire object is available now. This is a simpler presentation of the
clock quantifiers proposed by Atkey andMcBride [AM13], where■ replaces ∀κ. As an additional restriction,
fixed-point variables cannot appear under■; this is to disallow types likeµα. F (■▶α)which would defeat
guardedness.

This entails a notion of constant types: a typeA is constant if and only if all occurrences of▶ inA appear
under an occurrence of■.

3initially called • in [Naka00], but we follow the conventions of [CBBB16]

2

We can now introduce the following term formers (informally):

box : A→ ■A

unbox : ■A→ A

prev : ▶A→ A

While unbox is straightforward, theremust be restrictions onwhat termswe are allowed to use box and prev
on, in order not to lose our productivity guarantees. These are expressed in the formal typing rules:

x1 : A1, . . . , xn : An ` t : A Γ ` t1 : A1 · · · Γ ` tn : An A1, . . . , An constant
Γ ` box[x1 ← t1, . . . , xn ← tn]. t : ■A

x1 : A1, . . . , xn : An ` t : ▶A Γ ` t1 : A1 · · · Γ ` tn : An A1, . . . , An constant
Γ ` prev[x1 ← t1, . . . , xn ← tn]. t : A

There are two things to note here:

• The restriction for typing box t or prev t is that the free variables of t be all bound to constant types.
This guarantees that t only depends on data that is available now. As a degenerate example, any closed
term verifies this condition.

• The term formers box and prev are annotated with delayed substitutions, between square brackets.
These substitutions must close the term t, so that it stays invariant under later substitutions. This
serves the purpose of guaranteeing preservation of typing under substitution. Indeed, without delayed
substitutions, one could substitute e.g. f y for x in boxx; assuming x : AwithA constant, y : B and
f : B → AwithB non-constant, this would result in the term box (f y)which is ill-typed since y has
a non-constant type. Thus we close the term x to get box[x← x]. x, which becomes box[x← f y]. x
after substitution, and stays well-typed. This solution comes from the study of intuitionistic modal
logic [Bd00].
By convention, box tmeans box[x1 ← x1, . . . , xn ← xn]. t, where x1, . . . , xn are the free variables
of t.

As a final technicality, notice thatwhilewe can construct termswitnessing the isomorphism■(A×B) ∼=
■A × ■B, as well as the direction■A + ■B → ■(A + B), there is no way to construct a term of type
■(A+B)→ ■A+■B. Indeed, the term

distribConstSum = λx. case unboxx of a. in1 box a; b. in2 box b

is ill-typed in general, because a and b have the potentially non-constant types A and B. We solve this by
introducing a term former box+, which is similar to box except that it takesA+B to■A+■B:

x1 : A1, . . . , xn : An ` t : A+B Γ ` t1 : A1 · · · Γ ` tn : An A1, . . . , An constant
Γ ` box+[x1 ← t1, . . . , xn ← tn]. t : ■A+■B

The■modality allowsus to recover coinductive types fromguarded recursive types. For example, StrA =
■StrgA is the traditional coinductive type of streams ofA.

Most functions defined on guarded recursive types can be lifted to coinductive types by appropriate
uses of box, unbox, next and prev: for example, (::) = λx. λs. box (x ::g next unbox s) is the standard
constructor for coinductive streams.

3

2.2 OPERATIONAL SEMANTICS

The guarded λ-calculus is equipped with a simple call-by-name evaluation strategy. We can summarise the
types and terms of the language (except for⊛) as follows:

Type former Constructor Destructor
0 abort
1 〈〉
N n
+ in1, in2 case
× 〈·, ·〉 π1, π2
→ λ · t
µ fold unfold
▶ next prev
■ box unbox

With this in mind, values of the guarded λ-calculus are terms whose root node is a constructor; the basic
reduction rules are β-reductions, simplifying away the application of a destructor to a constructor (with
appropriate care taken to deal with delayed substitutions); and the standard call-by-name context rules allow
to reduce under destructors.

The only outlier is ⊛, whose reduction rule does not correspond to a β-reduction, but rather to the
homomorphism law of applicative functors:

next t1 ⊛ next t2 7→ next (t1t2)

Additional context rules allow us to reduce under each side of⊛.

2.3 INTERPRETATION IN THE TOPOS OF TREES

We can interpret the guarded λ-calculus semantically in the topos of trees S [BMSS12], which is defined as
the category of presheaves over the first infinite ordinal ω. Concretely:

• An object X of S is a positive integer-indexed collection of sets (Xi)i≥1 equipped with restriction
functions rXi : Xi+1 → Xi.

• A morphism f : X → Y in S is a family of functions (fi : Xi → Yi)i≥1 verifying the naturality
condition fi ◦ rXi = rYi ◦ fi+1 for i ≥ 1. This can be expressed as the infinite commutative diagram:

X1

f1
��

X2
rX1oo

f2
��

X3
rX2oo

f3
��

· · ·
rX3oo

Y1 Y2
rY1

oo Y3
rY2

oo · · ·
rY3

oo

• There is an adjunction

Set S
∆

HomS(1,−)

a

where∆ sends a setX to the constant S-object∆X :

X X
idXoo X

idXoo · · ·idXoo

4

andHomS(1,−) sends anS-objectY to its set of global elements, that is, morphisms from the terminal
object to Y . We say that an S-object is constant if it is isomorphic to some∆X , or, equivalently, if its
restriction functions are bijections.
This adjunction gives rise to a comonad ■ = ∆ ◦ HomS(1,−), which is used to interpret the ■
modality.

• S is cartesian closed:

– the initial, terminal and natural number objects are∆∅,∆{∗} and∆N respectively
– products and coproducts are defined pointwise on the underlying sets
– the exponentialBA has as its ith component the set of i-tuples (fj : Aj → Bj)1≤j≤i satisfying

the naturality condition above, and projections for restriction maps

This allows to interpret the 0, 1,N,×,+ and→ type formers of the guarded λ-calculus.

• There is a functor▶ that sends an S-objectX to the S-object

{∗} X1
!oo X2

rX1oo · · ·
rX2oo

This allows to interpret the▶modality, and next is interpreted as a natural transformation idS → ▶:

X1

!
��

X2
rX1oo

rX1
��

X3
rX2oo

rX2
��

· · ·
rX3oo

{∗} X1
!

oo X2
rX1

oo · · ·
rX2

oo

• The fixed-point typeµα. F (α) is interpreted as the unique fixed point of the functorF . The existence
and uniqueness of this fixed point is given by [BMSS12, theorem 4.5], provided that α is guarded in
F and doesn’t appear under■.

Section 2.3 of [CBBB16] ties the terms of the guarded λ-calculus with their semantic interpretation to
prove (strong) normalisation and adequation results.

3 A PRACTICAL IMPLEMENTATION: glam

Themain goal of this internship was to turn a theoretical language, the guarded λ-calculus, into a practically
usable programming language. I will now discuss the changes that I made to the guarded λ-calculus in that
direction.

N.B. — while [CBBB16] mentions an Agda implementation4 of the guarded λ-calculus, that implement-
ation seemsmore proof-oriented than programming-oriented. It was interesting to study, however, as I was
not familiar with Agda, nor with the technique of embedding a target language and type systemwithin a host
language using generalised algebraic data types.

glam’s syntax is detailed in the file README.md and is intended to be close to Haskell’s. We will first stick
to the mathematical notations for discussing the theoretical aspects, and then give a few examples of glam
programs in section 3.4.

As a first notable difference with the guarded λ-calculus, I got rid of delayed substitutions on prev-
and box-terms. Indeed, while they are useful on a theoretical level to guarantee preservation of typing, this
property isn’t necessary in practice: programs are only type-checked once, before execution.

4https://web.archive.org/web/20200811210702/https://hansbugge.dk/bin/glambda.zip

5

https://github.com/ncfavier/glam#readme
https://web.archive.org/web/20200811210702/https://hansbugge.dk/bin/glambda.zip

Except for this, glam’s evaluation model simply implements the call-by-name operational semantics
described in [CBBB16, section 1.1]. This model is very naïve, and incurs an exponential blow-up in com-
plexity on some very simple programs. This could be improved by sharing the evaluation of common sub-
expressions resulting from the same β-reduction (call-by-need), but I didn’t explore this direction, for lack
of time.

3.1 CONSTANT TYPES

I noticed that the definition of constant types could be relaxed to allow non-constant types to appear on the
left of a function arrow. This is based on the following observation:

Lemma 1. LetA be an S-object andB a constant S-object. ThenBA is a constant S-object.

Proof. Since B is constant, rBj is an isomorphism for all j, thus the naturality condition for (BA)i =

(fj)1≤j≤i implies fj+1 = (rBj)
−1 ◦ fj ◦ rAj for 1 ≤ j < i. It follows that the fj , 1 < j < i are all

uniquely determined by f1, hence (BA)i ∼= (BA)1 and thereforeBA is a constant object.

3.2 IMPLICIT (UN)BOXING

Supporting let-expressions raised a technical problem: the typing rules of the guarded λ-calculus do not
allow typing the term let z = fix z. 0 ::g z in box z. Indeed, z has the non-constant type StrgN =
µα.N×▶α, and is therefore not allowed as a free variable under box. However, if we replace z with its
definition, we get the closed term box (fix z. 0 ::g z), which has type StrN. Rather than evaluate all let-
expressions statically before typing the program, which would raise other issues, my proposed solution sim-
ultaneously solves this problem and allows to get rid of the cumbersome box+ term former.

We introduce a new, distinct kind of assertion in the typing contexts, of the form x :■ A, and we say that
the x variable is boxed. This is to be understood semantically as x : ■A, except that boxing and unboxing
are done implicitly by the type system. We then say that a term t is boxable in context∆, written∆ ` t :■ A,
when∆ only contains boxed variables and variables bound to constant types. Such contexts are interpreted
semantically as constant S-objects. The precondition for typing box t and prev t is then simply that tmust
be boxable, and we allow variables that are let- or case-bound to a boxable term to be boxed.

This makes the above example type-check, as well as the distribConstSum term from earlier, making
box+ redundant.

Formally, the typing rules are modified as follows:

∆ ` t : A ∀(x : B) ∈ ∆, B constant
∆ ` t :■ A Γ, x : A ` x : A Γ, x :■ A ` x : A

∆ ` t :■ A+B Γ,∆, x1 :
■ A ` t1 : C Γ,∆, x2 :

■ B ` t2 : C

Γ,∆ ` case t ofx1. t1;x2. t2 : C

Γ ` t : A+B Γ, x1 : A ` t1 : C Γ, x2 : B ` t2 : C

Γ ` case t ofx1. t1;x2. t2 : C

∆ ` s :■ A Γ,∆, x :■ A ` t : B

Γ,∆ ` letx = s in t : B

Γ ` s : A Γ, x : A ` t : B

Γ ` letx = s in t : B

∆ ` t :■ ▶A

Γ,∆ ` prev t : A

∆ ` t :■ A

Γ,∆ ` box t : ■A

6

and the interpretation of the terms is extended thus:

JΓ, x :■ A ` x : AKi(γ, a) = aiJΓ,∆ ` letx = s in t : BKi(γ, δ) = JΓ,∆, x :■ A ` t : BKi(γ, δ, j 7→ JsKj(δ)) if∆ ` s :■ AJΓ ` letx = s in t : BKi(γ) = JΓ, x : A ` t : BKi(γ, JsKi(γ)) otherwiseJΓ,∆ ` case t ofx1. t1;x2. t2 : BKi(γ, δ) = JΓ,∆, xd :■ Ad ` td : BKi(γ, δ, j 7→ aj) if J∆ ` t :■ A1 +A2Kj(δ) = [aj , d]JΓ ` case t ofx1. t1;x2. t2 : BKi(γ) = JΓ, xd : Ad ` td : BKi(γ, a) otherwise, where JtKi(γ) = [a, d]JΓ,∆ ` box t : ■AKi(γ, δ) = j 7→ J∆ ` t :■ AKj(δ)JΓ,∆ ` prev t : AKi(γ, δ) = J∆ ` t :■ ▶AKi+1(δ)

Just like in [CBBB16, definition 2.7], everything is well-defined because J∆K is a constant S-object. The
notation [a, d], where d ∈ {1, 2} and a ∈ Ad, refers to the injection into the Set coproductA1 +A2.

Note that we have JΓ, x :■ A ` x : AKi(γ, a) = JΓ, x : ■A ` unboxx : AKi(γ, a) = ai, justifying
the phrase “implicit unboxing”.

3.3 POLYMORPHISM

Hindley-Milner polymorphism is a simple yet useful system for adding polymorphism to the simply-typed
λ-calculus. It consists of defining polytypes (or type schemes) as universally quantified versions of the mono-
morphic types; this is rank-1, predicative polymorphism because quantifiers can only appear at the top-level
of a type.

Variables that are let-bound (and only those; this is called let-polymorphism) can be assigned a poly-
morphic type by generalising, that is, quantifying over the type variables that aren’t free in the environment,
and every use of a variable leads to a separate instantiation of its polymorphic type variables.

For example, the term let id = λx. x in id id 42 is well-typed: id is given the most general type
∀a. a → a, which is then instantiated to (N → N) → (N → N) and N → N respectively in the sub-
sequent uses of id.

glam extends the guarded λ-calculus with a similar system: we first define polytypes of the form

∀a1, . . . , an. ∀■b1, . . . , bm. A

whereA is a monomorphic type possibly containing a1, . . . , an and b1, . . . , bm as free variables (quantifiers
can appear several times and in any order). The intuitive meaning of ∀■a is “for all constant types a”.

Extending the definition of constant types so that a polymorphic type variable is constant if and only if
it is bound by ∀■, we can now infer polymorphic types using a variation on the standard Hindley-Milner
algorithm. The inference algorithm needs to keep track of which unification variables refer to constant
types, so that it can generalise them to ∀■-bound polymorphic variables; it also needs to be able to constrain
a unification variable to be constant if its use requires it. For example, consider the termλx. boxx: under the
λ-abstraction,x is assigned a fresh unification variablea as its type, then the use of box forcesa to be constant
and we get the inferred type ∀■a. a → ■a after generalisation. Finally, unification of a non-constant type
like▶A with a constant type variable should fail.

Alternatively, one can think of constant types as forming a type class in the sense of [WB89]. The constant
quantification ∀■a. . . . would then be written as forall a. Constant a => ... in Haskell syntax.

Guilhem and I briefly discussed the semantic interpretation of this kind of polymorphism, but didn’t
have time to reach anything satisfying as the internship was ending. However, I have an intuition that this
simple kind of let-polymorphism might be easily justified semantically by expanding all the let-bindings
and considering only monomorphic types.

7

3.4 EXAMPLES

As a concrete example of glam code, let us start by defining the types of guarded recursive streams and
coinductive streams, as well as associated constructors and destructors:

-- Guarded recursive streams
type StreamG a = a * >StreamG a

consG : forall a. a -> >StreamG a -> StreamG a
consG x s = fold (x, s)

headG : forall a. StreamG a -> a
headG s = fst (unfold s)

tailG : forall a. StreamG a -> >StreamG a
tailG s = snd (unfold s)

-- Coinductive streams
type Stream a = #StreamG a

cons x s = box (consG x (next (unbox s)))
head s = headG (unbox s)
tail s = box (prev (tailG (unbox s)))

The symbols > and # denote the▶ and■modalities, respectively.

Note that while explicit type signatures are required for consG, headG and tailG because of the use
of fold and unfold, types for cons, head and tail can be inferred. The inferred signatures are (up to α-
renaming):

cons : forall #a. a -> #(Fix StreamG. a * >StreamG) -> #(Fix StreamG. a * >StreamG)
head : forall a. #(Fix StreamG. a * >StreamG) -> a
tail : forall a. #(Fix StreamG. a * >StreamG) -> #(Fix StreamG. a * >StreamG)

where forall #a means ∀■a, and Fix means µ. Since StreamG and Stream are only type synonyms, they
appear fully expanded. Notice here that the polymorphic variable a in the signature for cons gets a constant
quantification, because we are boxing a value of type a.

Let’s define a zipWithG function which zips two guarded streams together using a combining function:

zipWithG f = let { go s1 s2 = consG (f (headG s1) (headG s2))
(go <*> tailG s1 <*> tailG s2) }

in go

This has the inferred type:

zipWithG : forall a b c. (a -> b -> c) -> (Fix StreamG. a * >StreamG)
-> (Fix StreamG. b * >StreamG)
-> (Fix StreamG. c * >StreamG)

Finally, we can define the Fibonacci sequence as follows:

fibG = consG 0 ((\f. consG 1 (zipWithG (\x y. x + y) f <$> tailG f)) <$> fibG)
fib = box fibG

8

where f <$> x is desugared to next f <*> x.

This is similar to the classic Haskell definition fib = 0 : 1 : zipWith (+) fib (tail fib), only
more verbose.

We can now compute the nth Fibonacci number by evaluating head (tailn fib).

4 CONCLUSION

There are lots of things I didn’t have time to do. In particular, glam suffers from a whole class of subtle bugs
stemming from a lack of distinction between the various kinds of variables (fixed-point variables, unification
variables, rigid polymorphic variables, etc.). The evaluation model is also horribly inefficient.

Nonetheless, this experience has allowed me to become more familiar with the world of research and
papers, learn more about category and topos theory, logic and λ-calculus, and become more proficient with
Haskell and its library ecosystem5, as well as the implementation of functional languages in general.

My hope is that glam is at least a step in the direction of making productive programming accessible
and practical. As I understand it, Guilhem has long-term plans in that direction to make the next, prev, box,
unbox, fold and unfold term formers implicit.

I thank Guilhem for his supervision.

REFERENCES

[AM13] Robert Atkey and Conor McBride. ‘Productive Coprogramming with Guarded Recursion’. In:
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming. ICFP
’13. Boston, Massachusetts, USA: ACM, 2013, pp. 197–208. DOI: 10.1145/2500365.2500597.

[Naka00] Hiroshi Nakano. ‘AModality for Recursion’. In: Proceedings of LICS’00. IEEE Computer Society,
2000, pp. 255–266.

[CBBB16] RanaldClouston, Aleš Bizjak, Hans BuggeGrathwohl and Lars Birkedal. ‘TheGuarded Lambda-
Calculus: Programming and Reasoning with Guarded Recursion for Coinductive Types’. In: Lo-
gical Methods in Computer Science 12.3 (2016).

[JR20] Guilhem Jaber and Colin Riba. ‘Temporal Refinements for Guarded Recursive Types’. working
paper or preprint. July 2020. URL: https://hal.archives-ouvertes.fr/hal-02512655.

[MP08] Conor McBride and Ross Paterson. ‘Applicative programming with effects’. In: Journal of Func-
tional Programming 18.1 (2008). DOI: 10.1017/S0956796807006326.

[Bd00] GavinM. Bierman and Valeria C. V. de Paiva. ‘On an intuitionistic modal logic’. In: Studia Logica
65.3 (2000), pp. 383–416.

[BMSS12] Lars Birkedal, Rasmus EjlersMøgelberg, Jan Schwinghammer andKristian Støvring. ‘First steps
in synthetic guarded domain theory: step-indexing in the topos of trees’. In: Logical Methods in
Computer Science 8.4 (2012).

[WB89] Philip Wadler and Stephen Blott. ‘How to Make Ad-Hoc Polymorphism Less Ad Hoc’. In: Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’89. Austin, Texas, USA: Association for Computing Machinery, 1989, pp. 60–76. ISBN:
0897912942. DOI: 10.1145/75277.75283. URL: https://doi.org/10.1145/75277.75283.

5notably Ed Kmett’s lens and bound libraries, although I didn’t use the latter for glam

9

https://doi.org/10.1145/2500365.2500597
https://hal.archives-ouvertes.fr/hal-02512655
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283

	Introduction
	The guarded λ-calculus
	Types and terms
	Operational semantics
	Interpretation in the topos of trees

	A practical implementation: glam
	Constant types
	Implicit (un)boxing
	Polymorphism
	Examples

	Conclusion
	References

