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1 Introduction

Linear logic, introduced by Jean-Yves Girard in the late 1980s [Gir87], is a logic that stems from the con-
tinuation of the path from classical to intuitionistic logic, and has proven to have many fruitful applications,
from functional programming to quantum mechanics. The most common interpretation of linear logic is
in term of resources: where classical logic allows one to use each hypothesis as many times as one wants
(including not at all) by using the weakening and contraction rules, linear logic gets rid of these rules, hence
requiring that each premise be used exactly once, as in e.g. a chemical reaction.

During this internship, I have been investigating the phase semantics of linear logic, a simple semantics
of provability, and trying to extract information on proofs from such semantics, in particular in relationship
to the focalisation property which allows a proof search procedure to narrow down its search space in
certain situations.

We will start with a basic review of propositional linear logic in section 2, then we will introduce phase
semantics and their main completeness results in section 3, and finally we will explore the application of
phase semantics to the focalisation property in section 4.
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2 Linear logic

Linear logic arises from the removal of the weakening and contraction rules from classical logic. This
prohibition splits the usual connectives of classical logic into multiplicative and additive variants:

classical LL (multiplicative) LL (additive)
∧ ⊗ &
∨ ` ⊕
⊤ 1 ⊤
⊥ ⊥ 0

where ⊗, ⊕, & and ` are associative and commutative, and 1, 0, ⊤ and ⊥ are their respective units (and
nullary versions).

In order to keep the expressive power of classical logic, we reintroduce weakening and contraction in a
controlled manner under the connectives ! and ?. In the resource interpretation, !A can be understood as an
infinite source of A that can be used or discarded as one wishes.

There is an elegant symmetry in linear logic, embodied by the involutive linear negation ·⊥, which is
defined inductively on formulas using De Morgan laws:

(A⊗B)⊥ = A⊥ `B⊥ (A`B)⊥ = A⊥ ⊗B⊥

(A⊕B)⊥ = A⊥ &B⊥ (A&B)⊥ = A⊥ ⊕B⊥

1⊥ = ⊥ ⊥⊥ = 1

0⊥ = ⊤ ⊤⊥ = 0

(!A)⊥ = ?A (?A)⊥ = !A

(X)⊥ = X⊥ (X⊥)⊥ = X

We now present the one-sided sequent calculus for linear logic, LL. A context (noted Γ, ∆, . . . ) is a
multiset of formulas, and a sequent has the general form Γ ⊢ ∆. However, such a sequent is equivalent to
⊢ Γ⊥,∆, so it is enough to consider sequents with only formulas on the right.

The inference rules for LL are as follows:

ax
⊢ A⊥, A

⊢ Γ, A ⊢ A⊥,∆
cut

⊢ Γ,∆

⊢ Γ, A,B `
⊢ Γ, A`B

⊢ Γ ⊥
⊢ Γ,⊥

⊢ Γ, A ⊢ ∆, B
⊗

⊢ Γ,∆, A⊗B
1

⊢ 1

⊢ Γ, A ⊢ Γ, B
&

⊢ Γ, A&B
⊤

⊢ Γ,⊤
⊢ Γ, A

⊕1⊢ Γ, A⊕B

⊢ Γ, B
⊕2⊢ Γ, A⊕B

⊢ ?Γ, A
!

⊢ ?Γ, !A

⊢ Γ, A
?d

⊢ Γ, ?A

⊢ Γ
?w

⊢ Γ, ?A

⊢ Γ, ?A, ?A
?c

⊢ Γ, ?A
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Linear implication, noted A ⊸ B, is defined as A⊥ `B.

Remarkably, ⊗ and ⊕ distribute over each other; dually, ` and & distribute over each other; finally, we
have !(A&B) ≡ !A⊗ !B.

3 Phase semantics

Linear logic has twomain semantics: coherence spaces, which are a semantics of proofs, and phase semantics,
a simpler semantics of provability which we will focus on.

Definition 3.1. A phase space consists of a commutative monoidM of phases (written multiplicatively)
and a subset ⊥ ⊆ M of antiphases.

The linear negation of a set of phasesX ⊆ M is defined asX⊥ = {m ∈ M | ∀x ∈ X,m · x ∈ ⊥}. For
any X,Y ⊆ M , we have the following easy results:

◦ X ⊆ X⊥⊥

◦ X ⊆ Y =⇒ Y ⊥ ⊆ X⊥

◦ X⊥ = X⊥⊥⊥

◦ (X ∪ Y )⊥ = X⊥ ∩ Y ⊥

A fact is a set of phases X such that X = X⊥⊥. Equivalently, a fact is a set of the form Y ⊥ for Y ⊆ M .

We define the following operators and constants on P(M):

X ⊗ Y = (X · Y )⊥⊥ X ` Y = (X⊥ · Y ⊥)⊥

X ⊕ Y = (X ∪ Y )⊥⊥ X & Y = X ∩ Y

1 = ⊥⊥

0 = ⊤⊥ ⊤ = M

I = {m ∈ M | m ·m = m} (the set of idempotents)

!X = (X ∩ 1 ∩ I)⊥⊥ ?X = (X⊥ ∩ 1 ∩ I)⊥

Let Φ be an n-ary monotonous operator on P(M). Φ is

− negative if it maps facts to facts, i.e. Φ(X⊥⊥
1 , . . . , X⊥⊥

n )⊥⊥ = Φ(X⊥⊥
1 , . . . , X⊥⊥

n );

+ positive if it verifies Φ(X⊥⊥
1 , . . . , X⊥⊥

n ) ⊆ Φ(X1, . . . , Xn)
⊥⊥ (and hence, by monotonicity,

Φ(X⊥⊥
1 , . . . , X⊥⊥

n )⊥⊥ = Φ(X1, . . . , Xn)
⊥⊥).

In the nullary case, every set of phases is positive and the negative sets of phases are exactly facts.

Note that · and ∪ (and their n-ary versions) are positive operators, while ` and & are negative
operators [Gir99, appendix F], and that both properties are stable under composition.

Definition 3.2. A phase model is a phase space (M,⊥) together with a fact JXK for every atomic formulaX .
The interpretation JAK of a formula A is defined by induction using the operators above, and the interpretation
of a context Γ = A1, . . . , An is defined as JΓK = JA1K ` · · ·` JAnK. One can easily check that JAK, JΓK are
facts.
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A formula A is said to be valid in a given phase model if 1 ∈ JAK. More generally, a sequent ⊢ Γ is
valid if 1 ∈ JΓK.

Let us now state core results of phase semantics:

Theorem 3.1 (Soundness). If a sequent is provable in LL, then it is valid in every phase model.

Proof. By induction on a proof of LL; see [Oka98, theorem 1].

Theorem 3.2 (Completeness). If a sequent is valid in every phase model, then it is provable in LL.

This statement can actually be made stronger:

Theorem 3.3 (Cut-free completeness). If a sequent is valid in every phase model, then it has a cut-free proof
in LL.

Proof. The proof proceeds by defining a syntactic phase model (M,⊥) whereM is the free commutative
monoid over formulas of LLwith ?A and ?A, ?A identified,⊥ = {Γ ∈ M | ⊢ Γ is provable without the cut rule},
and JXK = {X}⊥. It then shows that JAK ⊆ {A}⊥ by induction on formulas, from which the result follows;
see [Oka98, theorem 3] for details.

Combining the cut-free completeness theorem with the soundness theorem, we get:

Theorem 3.4 (Cut elimination). If a sequent is provable in LL, then it has a cut-free proof.

4 The focalisation property

Proof search is the problem of finding a proof of a given sequent. It can be expressed recursively, starting
from a root sequent and working its way up towards the leaves (e.g. axiom rules). At each step, the
procedure must choose a formula in the current sequent, a rule to obtain that formula, and possibly the
prerequisites for that rule. In fact, we can observe that the only connectives whose introduction rule
requires making a choice are ⊗ and ⊕: the ⊗ rule requires choosing a way to split the context into two,
while the ⊕ connective requires choosing between the ⊕1 and ⊕2 rules.

This suggests another partition of the connectives into two polarities, the positive connectives (⊗, ⊕, 1,
0, ! and positive atoms) and the negative connectives (`, &, ⊥, ⊤, ? and negative atoms). Notice that the
remarkable distributivities of section 2 only occur between connectives of the same polarities, and that
linear negation flips the polarity of a formula (which is defined as the polarity of its main connective).

A crucial property of the proof theory of linear logic is the focalisation (or focusing) property, discovered
by Jean-Marc Andreoli [And92], which allows the search space to be reduced by "focusing" on certain
connectives.

The property has two sides:

− negative connectives are reversible: in a sequent with negative formulas, we can always start by
applying the introduction rules for the negative connectives without risk;

+ positive connectives can be grouped into a maximal cluster and handled all at once. For example, given
the formula A⊕ (B ⊗ C), if we decide to decompose it using the ⊕2 rule, then we can immediately
decompose B ⊗ C using the ⊗ rule without needing to backtrack.
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The focalisation property already has several syntactic proofs [And92; SM07; Lau04]; the main contri-
bution of this internship is a semantic proof of the completeness of focused proofs using phase semantics.

Laurent’s proof [Lau04] proceeds in two steps: it first embeds proofs of LL into proofs of LLfoc, a
restricted variant of LL that enforces a weak focalisation property (the core of the proof, according to
Laurent), then it embeds cut-free proofs of LLfoc into proofs of LLFoc (note the capital), an even more
restricted system that enforces the full focalisation property.

We prove that phase semantics are complete with respect to the cut-free LLfoc system in a way similar
to the proof of theorem 3.3. A sequent of LLfoc has the shape ⊢ Γ;Π, where Γ is a multiset of formulas and
Π contains at most one positive formula. To simplify the notation, we let ⊢ Γ;N mean ⊢ Γ, N ; when N is
a negative formula. The rules of the cut-free LLfoc system with expanded axioms are as follows:

ax
⊢ X⊥;X

⊢ Γ;P
foc

⊢ Γ, P

⊢ Γ, A,B; Π `
⊢ Γ, A`B; Π

⊢ Γ;Π
⊥

⊢ Γ,⊥; Π

⊢ Γ;A ⊢ ∆;B
⊗

⊢ Γ,∆;A⊗B
1

⊢; 1
⊢ Γ, A; Π ⊢ Γ, B; Π

&
⊢ Γ, A&B; Π

⊤
⊢ Γ,⊤; Π

⊢ Γ;A
⊕1⊢ Γ;A⊕B

⊢ Γ;B
⊕2⊢ Γ;A⊕B

⊢ ?Γ, A;
!

⊢ ?Γ; !A

⊢ Γ;A
?d

⊢ Γ, ?A;

⊢ Γ;Π
?w

⊢ Γ, ?A; Π

⊢ Γ, ?A, ?A; Π
?c

⊢ Γ, ?A; Π

Definition 4.1. We define the focalised syntactic phase model as (M,⊥) whereM is the free commutative
monoid over formulas of LL with ?A and ?A, ?A identified, ⊥ = {Γ ∈ M | ⊢ Γ; }, and JXK = {X⊥}⊥⊥ for
positive atoms X .

Let Foc(A) = {Γ ∈ M | ⊢ Γ;A}. Clearly Foc(A) ⊆ {A}⊥ by the foc rule, and in particular Foc(N) =
{N}⊥ for N negative.

Note that provability is compatible with our identification of ?A and ?A, ?A thanks to the ?w and ?c
rules, so that ⊥ and Foc(A) are well-defined. Also note that I = {?Γ | Γ ∈ M} ⊆ 1 because of the ?w
rule, so that J!AK = (JAK ∩ I)⊥⊥.

We use the decomposition of exponential connectives alluded to in [Lau04, section 4.1]:

!A = ´♯A ?A = ˆ♭A
where ´, ♭ are positive and ♯, ˆ are negative. In fact, we only need to consider formulas of the forms A and
♯A, where A is a formula of LL. Let us extend our definitions to this connective with J♯AK = J!AK and
Foc(♯A) = {A}⊥ ∩ I .

For a formula A, let |A| denote the number of main negative subformulas in A (where ♯B is the main
negative subformula in !B).

Let ΨA be an |A|-ary positive operator on P(M) defined by induction as follows:

◦ ΨN (N1) = N1 if N is negative
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◦ ΨX() = {X⊥}

◦ ΨB⊗C(B1, . . . , B|B|, C1, . . . , C|C|) = ΨB(B1, . . . , B|B|) ·ΨC(C1, . . . , C|C|)

◦ ΨB⊕C(B1, . . . , B|B|, C1, . . . , C|C|) = ΨB(B1, . . . , B|B|) ∪ΨC(C1, . . . , C|C|)

◦ Ψ1() = {∅}

◦ Ψ0() = ∅

◦ Ψ!B(B1) = B1

Lemma 4.1. For any formula A with main negative subformulas A1, . . . , A|A|,

JAK = ΨA(JA1K, . . . , JA|A|K)⊥⊥

Proof. By induction:

◦ If A is negative, then we have JAK = JAK⊥⊥ because JAK is a fact.

◦ If A = X , then JXK = {X⊥}⊥⊥ = ΨX()⊥⊥.

◦ If A = B ⊗ C , then

JB ⊗ CK = (JBK · JCK)⊥⊥

= (ΨB(JB1K, . . . , JB|B|K)⊥⊥ ·ΨC(JC1K, . . . , JC|C|K)⊥⊥)⊥⊥ by the induction hypothesis

= (ΨB(JB1K, . . . , JB|B|K) ·ΨC(JC1K, . . . , JC|C|K))⊥⊥ by positivity

= ΨB⊗C(JB1K, . . . , JB|B|K, JC1K, . . . , JC|C|K)⊥⊥

◦ If A = B ⊕ C , then

JB ⊕ CK = (JBK ∪ JCK)⊥⊥

= (ΨB(JB1K, . . . , JB|B|K)⊥⊥ ∪ΨC(JC1K, . . . , JC|C|K)⊥⊥)⊥⊥ by the induction hypothesis

= (ΨB(JB1K, . . . , JB|B|K) ∪ΨC(JC1K, . . . , JC|C|K))⊥⊥ by positivity

= ΨB⊕C(JB1K, . . . , JB|B|K, JC1K, . . . , JC|C|K)⊥⊥

◦ If A = 1 then J1K = {∅}⊥⊥ by definition.

◦ If A = 0 then J0K = ∅⊥⊥ by definition.

◦ If A = !B then J!BK = J♯BK = Ψ!B(J♯BK)⊥⊥.

Lemma 4.2. For any formula A with main negative subformulas A1, . . . , A|A|,

ΨA(Foc(A1), . . . , Foc(A|A|)) ⊆ Foc(A)

Proof. By induction:
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◦ If A is negative, ΨA(Foc(A)) = Foc(A) by definition.

◦ If A = X , then ΨX() = {X⊥} ⊆ Foc(X) by the ax rule.

◦ If A = B ⊗ C , then

ΨA(Foc(A1), . . . , Foc(A|A|))

= ΨB(Foc(B1), . . . , Foc(B|B|)) ·ΨC(Foc(C1), . . . , Foc(C|C|))

⊆ Foc(B) · Foc(C) by the induction hypothesis
⊆ Foc(B ⊗ C) by the ⊗ rule

◦ If A = B ⊕ C , then

ΨA(Foc(A1), . . . , Foc(A|A|))

= ΨB(Foc(B1), . . . , Foc(B|B|)) ∪ΨC(Foc(C1), . . . , Foc(C|C|))

⊆ Foc(B) ∪ Foc(C) by the induction hypothesis
⊆ Foc(B ⊕ C) by the ⊕1 and ⊕2 rules

◦ If A = 1, then Ψ1() = {∅} ⊆ Foc(1) by the 1 rule.

◦ If A = 0, clearly Ψ0() = ∅ ⊆ Foc(0).

◦ If A = !B, then

Ψ!B(Foc(♯B)) = {B}⊥ ∩ I

⊆ Foc(!B) by the ! rule

Lemma 4.3. For any formula A, JAK ⊆ Foc(A)⊥⊥.

Proof. By induction:

◦ If A is a positive formula with main negative subformulas A1, . . . , A|A|, then

JAK = ΨA(JA1K, . . . , JA|A|K)⊥⊥ by lemma 4.1

⊆ ΨA(Foc(A1)
⊥⊥, . . . , Foc(A|A|)

⊥⊥)⊥⊥ by the induction hypothesis

= ΨA(Foc(A1), . . . , Foc(A|A|))
⊥⊥ by positivity

⊆ Foc(A)⊥⊥ by lemma 4.2

◦ If A = ♯B, then by the induction hypothesis J♯BK = J!BK = (JBK ∩ I)⊥⊥ ⊆ (Foc(B)⊥⊥ ∩ I)⊥⊥ ⊆
({B}⊥ ∩ I)⊥⊥ = Foc(♯B)⊥⊥.

Otherwise, it is enough to prove JAK ⊆ {A}⊥.

◦ If A = X⊥, then JX⊥K = JXK⊥ = {X⊥}⊥⊥⊥ = {X⊥}⊥.
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◦ If A = B & C , we have JB & CK = JBK ∩ JCK ⊆ {B}⊥ ∩ {C}⊥ by the induction hypothesis;
moreover,

⊢ Γ, B; ⊢ Γ, C;
&

⊢ Γ, B & C;

hence {B}⊥ ∩ {C}⊥ ⊆ {B & C}⊥, from which the result follows.

◦ If A = B ` C , let Γ ∈ JB ` CK = (JBK⊥ · JCK⊥)⊥. By the induction hypothesis, JBK ⊆ {B}⊥,
hence B ∈ {B}⊥⊥ ⊆ JBK⊥, and similarly C ∈ JCK⊥, therefore ⊢ Γ, B,C; . Moreover,

⊢ Γ, B,C; `
⊢ Γ, B ` C;

hence Γ ∈ {B ` C}⊥, from which the result follows.

◦ If A = ⊤, we have J⊤K = M = {⊤}⊥ by the ⊤ rule.

◦ If A = ⊥, we have J⊥K = ⊥ ⊆ {⊥}⊥ by the ⊥ rule.

◦ If A = ?B, then J?BK = (JBK⊥ ∩ I)⊥. By the induction hypothesis, JBK ⊆ Foc(B)⊥⊥, hence
(JBK⊥ ∩ I)⊥ ⊆ (Foc(B)⊥ ∩ I)⊥. Moreover, ?B ∈ Foc(B)⊥ ∩ I because of the ?d rule, therefore
(Foc(B)⊥ ∩ I)⊥ ⊆ {?B}⊥, from which the result follows.

Corollary 4.3.1. For any context Γ = A1, . . . , An, JΓK ⊆ {Γ}⊥.

Proof. By lemma 4.3, we have JAiK ⊆ Foc(Ai)
⊥⊥ ⊆ {Ai}⊥ for all 1 ≤ i ≤ n, hence {Ai} ⊆ {Ai}⊥⊥ ⊆

JAiK⊥, therefore {Γ} = {A1} · · · {An} ⊆ JA1K⊥ · · · JAnK⊥.

Thus, JΓK = JA1K ` · · ·` JAnK = (JA1K⊥ · · · JAnK⊥)⊥ ⊆ {Γ}⊥.

Theorem 4.4 (Cut-free completeness in LLfoc). If a sequent ⊢ Γ of LL is valid in all phase models, then ⊢ Γ;
has a cut-free proof in LLfoc.

Proof. We have ∅ ∈ JΓK, hence ∅ ∈ {Γ}⊥ by corollary 4.3.1, therefore there is a cut-free proof of ⊢ Γ; in
LLfoc.

Combining this with the soundness theorem and [Lau04, proposition 1], we get:

Theorem 4.5 (Weak focalisation). If a sequent is provable in LL, then it has a weakly focalised proof.

5 Conclusion

We gave a semantic proof of the weak focalisation property. It seems possible to adapt the proof to use
LLFoc instead of LLfoc (and thus get the full focalisation property) by considering the submonoid of contexts
of the shape P, ?Γ,X⊥, but I couldn’t make it work. Another possible future direction would be to extend
this to first-order linear logic.

I thank Alexis for his supervision.
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